BGPE Intensive Course: Contracts and Asymmetric Information

Introduction: Asymmetric Information and the Coase Theorem

Anke Kessler

Introduction

- standard neoclassical economic theory assume all agents have access to all information relevant to their decisions e.g., about characteristics of goods or about available technology
- in reality: lots of uncertainty and imperfect information
 e.g. labor productivity, consumer demand, goods quality
- this issue is addressed by economics of information and contract theory; questions:
 - what are market outcomes and the optimal contracts under asymmetric information?
 - can asymmetric information help to explain actual (institutional) arrangements?
 - what are the welfare implications of asymmetric information?
- information economics/contract theory have been extremely influential
 - very important practical implications (policy)
 - provide fundamental insights to all areas of economics

The Coase Theorem

An Example with Externalities

- two agents i = A, P
- agent A has project/decision $q \in \{1, 0\}$
- utilities

$$u_A(q, \theta, x) = \theta q + x$$
 and $u_P(q, \sigma, x) = -cq + x$

x = composite consumption good (money)

 θ = net benefit of A,

c = negative external effect on P

- Pareto optimality requires: $q = 1 \Leftrightarrow \theta c \ge 0$
- "market solution" is $q^M = 1 \Leftrightarrow \theta \ge 0$
- \rightarrow market solution is not efficient whenever $c \neq 0$
 - Pigou: corrective tax on project $\tau = c$
 - Coase: state intervention not necessary

The Coase Theorem

Theorem (Coase): If bargaining involves no transaction cost, and property rights are well defined and enforceable, then rational parties will agree to the efficient solution and enforce this solution through a private contract.

Corollary If preferences display no wealth effects, then the agreement reached will not depend on the initial assignment of property rights or on bargain power.

Proof.

- suppose 'property rights' over q belong to A and consider contract $\{q,t\}$ specifying decision q and compensation payment t from P to A
- utilities $u_A(q,t,\theta)=\theta q+\tilde{t},\,u_P(q,t)=-cq-t$
- assuming A makes take-it-or-leave-it offer to P optimal contract is

$$q(\theta) = q^*(\theta) = 1 \quad \Leftrightarrow \theta + -c \ge 0 \quad \text{and} \quad t(\theta) = \sigma[q^*(\theta) - q^M(\theta)]$$

analogous if B makes take-it-or-leave-it offer to A of if property rights belong to P

Failure of the Coase Theorem

- suppose θ = private information of A
- P only knows that $\theta \sim F(\theta)$ on $[\underline{\theta}, \overline{\theta}]$, $\underline{\theta} < 0 < \overline{\theta}$
- continue to assume that A makes take-it-or-leave-it offer $\{q, t\}$ to P
- let $q(\theta)$ and $t(\theta)$ be agreed upon decision and transfer if A is of type θ
- can efficient decision $q(\theta) = q^*(\theta)$ ever be part of agreement?
- suppose P has agreed to contract, for offer $\{t(\theta), q(\theta)\}$ to optimal for A, need in particular:

$$\forall \theta, \theta'$$
 $U_A(\theta) = \theta q(\theta) + t(\theta) \ge \theta q(\theta') + t(\theta')$ (IC)

for agreement to be mutually beneficial, need

$$u_A(\theta) = \theta q(\theta) + t(\theta) \ge \max(\theta, 0)$$
 (IR_A)

$$E[u_P] = E_{\{\theta|\cdot\}} \left[-cq(\theta) - t(\theta) \ge -cq^M(\theta) \right] \tag{IR}_P$$

Failure of the Coase Theorem

- agreement involves efficient decision, $q(\theta) = q^*(\theta) = 1 \Leftrightarrow \theta c \ge 0$
- assume $\bar{\theta} c > 0$, implications of (IC) constraint

$$\theta, \theta' \ge c \quad (IC) \Rightarrow \qquad t(\theta) = t(\theta') \equiv t_1$$

$$\forall \theta, \theta' < c \quad (IC) \Rightarrow \qquad t(\theta) = t(\theta') \equiv t_0$$

$$\forall \theta < c \le \theta' \quad (IC) \Rightarrow \qquad t(\theta) = t(\theta') + c \quad \Rightarrow \quad t_0 = t_1 + c$$

• implications of (IR_A) constraint

$$c \ge \theta > 0$$
, $t_0 = t_1 + c \ge \theta \implies t_1 \ge 0, t_0 \ge c$

• implications of (IR_P) constraint if contract offer is $\{0, t_0\}$

$$-t_0 \ge -c \frac{F(c) - F(0)}{F(c)} \qquad \Leftrightarrow \qquad t_0 \le c \frac{F(c) - F(0)}{F(c)} \qquad < c$$

 \Rightarrow efficient decision cannot be part of contract that is proposed by A and accepted by P if $\bar{\theta}-c\geq 0$

Conclusion

- if $\bar{\theta} \geq c$, and A is privately informed about θ , there does not exist a mutually acceptable contract that implements the efficient outcome
- this conclusion also holds more generally, e.g., for different bargaining games between A and P [see Klibanoff - Murdoch (1995, ReStud)]
- Intuition. Threat of opportunistic behavior of A (may overstate value of decision to increase compensation) makes it impossible to differentiate compensation payments based on θ
 Hence, P must pay the same (maximal) compensation amount in every state where the project is not realized.
 P is not be willing to that much because chances are A won't go ahead even without agreement.

A General Characterization of Agency Problems

- relationship between two (sometimes more) parties; one party's utility depends on the other party's information or action
- one party is or will be better informed about some state of nature that is relevant to the relationship than the other party; the informed party is the agent A and the uninformed party the principal P
- private information ex ante (pre-contractual opportunism)
 - ⇒ adverse selection (hidden information)

Examples: Insurance Company – Car Owner, Employer – Employee, Plaintiff – Attorney, Seller – Buyer, Regulator – Regulated Firm

- uninformed party moves first → screening
- informed party moves first → signaling
- private information ex post (post-contractual opportunism)
 - ⇒ moral hazard (hidden action)

Examples: Insurance Company – Car Owner, Employer – Employee, Plaintiff – Attorney, Homeowner – Contractor, Shareholder – Manager, Patient – Physician,